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Abstract

2 3037

This paper computes the electrical conductivity of a fully
ionized, spatially\homogeneous plasma under the influence of a
uni form, periodically alternating electric field. The veloc}ty.
distribution of the electrons is determined by solving the
linearized Fokker-~Planck equations. All the terms in the
collision integral are retained, including those representing
electron-electron interactions. The resultant values of
conductivity is‘expected to be valid in the range of frequencies

from zero to below the plas freguenc ;
plasma gu y /U‘L/WY
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I. Introduction

The purpose of this paper is to calculate the A.C. conductivity
of a ;patially homogeneous plasma using the Fokker-Planck Equation.
The D.C. conductivity of a plasma has been.calculated in the well-

S
known works of Cohen, Spitzer and Routly,(l)

and ‘Spitzer and Harm
" Their results are in good agreement with the later experimental

works of Lin, et al(3). Bernstein and Trehan compute the A.C. con-

ductivity assuming a Lorentz gas model(4). The A.C. conductivity

of a real gas should approach that of a Lorentz gas at high frequencies.

(See detailed discussions in Section IV.) Toward lower frequencies
their departure is expected to increase so that their ratio becomes

nearly 2 in the D.C. limit, in accordance with References (1) and

(5), (6)

(2). The most recent works on A.C. conductivity by Dawson, et al.,

]
consider the time variation of the two-particle distribution, which
is necessary when dealing with A.C. currents of ultra-high frequen-
cies. However, the domain of applicability of their work is limited
to the frequency range g > Wp where wp denotes the plasma fre-
quency. Thus, a more precise calculation for the low and inter-
mediate range of y appears desirable.

The basic equation.to be used in the present work is the

Boltzmann-Fokker-PlancK Equation:

df -~ ofi Faf 6fi
SR Pk = / ) (1)

3t 32 mav et

(2)
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where f£; is the distribution function of particles of type i,
6f4

(%?T)c is the qhange of £ produced by collisions.

Equation (1) is deduced from Liouville theorem to describe
a many-particle system undér two assumptions:

1) That the characteristic dimensions of the inhomogeneities
are mucﬁ larger than the average impact parameter for the particles
participating in the collision.

i) That the characteristic time variation of the process is
much larger than the duration of an average collision, or in other
words, a collision is completed and the correlation function is
"relaxed" before the distribution function itself makes any appre-
ciable change.

It should be noted here that the term "duration of collision”
is different from the so-called "collision time"; collision time
is the time between two collisions. For particles interacting
through long range forces, this time may be regarded as the time
in which deflections gradually deflected the considered particle
by 90°. Duration of collision is the time during which an inter-
action takes place. In a plasma it is of the order wp_ . In
Figure 1 a time scale diagram is drawn, and the validity of our
calculation and those of Dawson, Oberman, and Ron are indicated.

f 0
The explicit expression of (E—i) depends on the nature. of
' c

dt
the interaction force. In a fully ionized plasma, the particles

-




interact through the long range Coulomb fgrces. The cumulative
effect of "weak" deflections resulting from the relatively distant
collisions outweighs the effect of occasional large deflections
due to relatively close collisions, so one may neglect the contri-

(1)

bution by those very close encounters - encounters which result

in deflections of 90° or larger.

Also, the effect of distant particles lying outside of the |
Debye length Ap may be neglected because of the shielding of inner
[ df4

particles. Thus, in the computations of ( ) , it is only neces-
ot /¢

sary to consider the collisions with impact distance intermediate

R
‘ e
between Ap and by, where by = —

KT

o)
a 90 deflection. The effects of these collisions are cumulative,

is the impact parameter yielding

and the total deflection produced in an interval of time is similar

. . oL .
to that of the Brownian motion; hence, one may expand ( l) in
dt /¢

powers of <AV>, where <AV> is the average velocity change due to

collisions.(l)'(7) This procedure leads to the following Fokker-

Planck collision integral: 8)
df4 3 ohi 13 . 3%g\ 7.
== .=I‘i{ _.(fi_,)-:- S § - , (2)
dt Je v AV 23vav VIV,
ms +Iint - — - -1 '
where hiy = g lm J jdv’fj(v')ﬁ—vﬂ (3)
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g = ';J;_f‘dx‘;' £5(VIF-V] (4)

: 4mz?e® mimiven2ip
and. . Ty = — 1n — . (5)
mi®  2(mitmg)e?

is the ?

, .25
mass of the "i"th species, e is the electronic charge, ;D=( KT
4me?

The summation in h; and g sums over all species, mj

is the Debye length.

In. this paper we consider only plasma with singly-charged

L A ~gmt iy ey g g 4 i s

ions. The extension of ‘the present method to those with multiply-

charged ions is straight-forward.

SV

II. Derivation of Equations and Formulae
If the distribution function f has an azimuthal symmetry
about a certain axis, then, following Rosenbluth, MacDonald, and

Judd(s), the collision term may be written down explicitly in

spherical polar coordinates in velocity space:

dE4 - ahj d 3hi 32 3%g |
———) = Ti{-V"a——[fiva__"] - v*z__{fi -u® ] + (2v?)~? l:fiv9 ] %
ot /e . ov ov du CJ8 dv? 3v3 :

3 |

L 4y—2 (1-(R 389° + v~ (=2 o9 - =2 - 2y 99 L

o+ (2v?) l{v (1-u 2 Nt v™t (1-u )av vy (- )Bp}] E
2 . 'i

+ v~ (:f (1-u?) —1_._1‘] |

dr 3%g ag
3y—-1___ P RO § - — — "1_....
+ (2v3) BVLfl{ v=l (1-p )au2 2av + 2uv }]

, ] | . \

+ (2v3)'1-—§--l:fi{v‘2p(l—u2)a E 2uv‘1§g + 2v"1(l—u3)a el —2v‘?ag}1
du? dV BV 3u

(6¥
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where 4 = €cOs 6§ is ‘the direction cosine between v and E. Equation (6)
is an exact expression of the Fokker-Planck Equation in spherical
coordinates for a distribution function with azimuthal symmetry.

We assume that the system is subject to a weak electric field

Eoelwt whose direction lies along z-axis. Then following Chapman(g)

(10)

Cowling, and Spitzer,(l) we expand £; in a power series of E:

i(c)(V) + Eofi(l) (v,t) + Eozfi(z) (Tot) + eenen (D)

£i(v,t) = £

(o)

where £5 (v) is a time independent Maxwellian distribution and
fi(l)(s,t), fi(z)(s,t), ...... are the perturbed part due to applied

electric field. When a steady state has been reached and no transient

current exists, the time dependent part of fi(J)(V,t) must be propor-

tional to elwt. Since the average energy imparted to the electrons

between encounters is small compared with their kinetic energy,

the velocity dependent part of fi(j)(G,t) can be written as

L (3)
e 2KT D; ° (v)u. Therefore, we have
=, xyd
. R —igil_ ) igt
ff(J)(G,t) = g KT Di(j)(v)ue (8)
y (27KT) ¥2

Combining equations (1), (6), and (7) keeping only terms -

linear in E,, we Obtain

1) (1)
\f_( e 3 - >f L
OFi 4 2 tutg O () L fO7L : (9)
3t mj v dt c
(1)
df4
where | — is the linearized Fokker-Planck collision integral.

dt /¢
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and d

some

integ

where

Since the ions' contribution to electric current is negligible
red to electrons, we will consider only electron distributions
rop the subscript i in the distribution function heresafter.
Substituting Equation (8) into Equation (9) we find, after
algebraic manipulations, the following second order linear

ral-differential equation:

D"(x) + P(x)D'(x) +Q(x)D(x) = R(x) + s(x) (10)

1 2x28 " (x)

-iBx® + 2(L + & - 2x%%"') 1
_ = 12
Q(X) H(}‘:) + XS ( )
R(x) = - 20x4 _ 8(2.?x5—2x4) I () (13)
H(x) 37 2H (%)
16 . s )
S(x) = ________{XI3(X) - 1.2xI5(x) - x*I_(x)(1-1.2x )} (24)
3ﬂ%H(X) : '
X .8
¢(x) = [ e ¥ ay (15)
‘o .
H(x) = &(x) - x9'(x) (16)
x
I,(x) = f ynD(y)e_yQ dy _ (17)
o
I,(=) = [ pe¥ ay (18)"~
with @ = —-EKT/me®nlni - A = Ap/bg
. = 2KT) - 42h =
X = V/(—-—rn—) B —E)ﬁ;\ wc ’

o . . ‘ .
where w, is approximately the 90 deflection time of a particle

with thermal velocity. When w = 0, Equation (10)* reduces

* Note that I o(®) is essentially the total change of mo-
mentum of . electrons arising from electron-ion interactions.
(Continued on next page)
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to Equation (8) of Reference (8) which considers D. C. electric

conductivity.

In a D. C. electric field, the electrons are not accelerated
in a steady state. Hence, the inertia force term is zero and

w) = 32

ITI. Solution of Equation

Equation (10) is a linear integral-differential equation
whose unknown D(x)_is a complex function of a real variable. The
present section will discuss the method of its solution. As will
be evident in what'follows, the procedure for numerical integration
is far from straight-forward.

On the one hand, we encounter the problem of the instability
of the solution at small and at large x. Because of the existence
of singularities in Equation (10) at x = 0 and at x = @, a slight
deviation of D(x) at either small or large x, tends to be built
up quiteArapidly. In order to obtain a physically acceptable
solution, it is required that D(x) does not approach infinity too
fast, leading to infinite conductivities. The starting value of

D at small x can be cobtained by means of a series of solutions.

‘Since the mutual electronic interaction cannot crarge the total
~cmentum of the electrons, Io(w), by Newton's second law, must
cuaal the total force exerted on the electrons by the applied
Field minus the inertia force of electrons. This relation gives
us: 3TT‘>§

Io(®) = Fo - Pry(=) .

9]




But because of the instability, we cannot proceed to integrate in
a step wise manner. To overcome this difficulty, we adopted a

(1) We shall refer to

scheﬁe used by Cohen, Spitzer, and Routly.
‘their paper (Reference (1)) for full details.

On the other hand, we note that I (®) is no longer a known
gquantity as it is in the case of D. C. conductivity; it depends on
the solution D(x) itself. We proceed as follows. Since we want
conductivities at different frequencies, it is necessary to obtain
solutions for different values of the parameter B. We begin with
a small value B = 0.05. Using an Io(w) taken from the D. C. case,
i.e. Ij(=) = 0.665, we obtain a solution to Equation (10) from
whiqh we get a new I (®). Next, we pass on tc B = 0.1 using the
I,(=®) obtained for the previous B. In this way, we proceed to ever
increasing values of B, until the initial adopted I (®) and the
final calculated Ig(«) differ by no more than 2 per cent. This
occurs at B = 1.3%. From this point on, we resort to a method of
systematic trials. The initial and £inal I_(®) Zor zll values of
B agree to within 2 per cent, which is considered sufficiently

accurate for the present purposes.

IV. Results and Discussion

The current is given by

iwt

J = -ef dvvE(V,r) = ABge I3(=) (19)

U S
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where I5(=) = fo ©°D(x)e ¥ dx
et 308
a =2 12X (20)
3 Y2 e 10
‘Since J = OE, we have the complex conductivity
o = Alg(=®) . {21)
: ] 1 c
the impedance Z = - = . (22)
tl e resistance R = E ReIz(=®) _ cReIz(<) , (23)
Al (=)F 3 (=F
@) 53
and the reactance X =.E ImI3 (=) = cIml3 (=) ‘ (24)
AL, (=) 2 14 (=)

= s m®mnYRec1ina .

1
A 2 (2KT)¥

with ’ Cc =

It may be remarked here that the A. C. conductivity cepends on
three factors:

1) The inertia c¢f the conducting electrons.

2) The mutual interactiorn among electrons and ions.

. 3) The mutual interaction among electrons themselves.

The mutual electronic interactions have no direct effect on
conductivity since the total chaﬁge of momenturm <u& to such inter-
actions is zero. Nevertheless, they altex the distributiop of

electrons and thereby modify the effect which electron-ion colli-

sions and electron inertia have in impeding the current. When
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w is small, the conductivity is primarily determined by collisions.
The inclusion of electron-electron interactions reduces the con-

ductivity by a factor of approximately two. As w increases and

vbecomes of order w,., this effect becomes less and less important
because there is then insufficient time in each A. C. cycle to
allow an effective modification of the distribution by electron-
electro interactions. When w well exceeds W., we may neglect this

g

effect and D(x) reduces to . ‘ \

Df( (x) = T:_E_a ) (25)

o (%) = Af ———— ax (26)

(4)

which is just the A. C. conductivity of a Lorentz gas.
If we further increase w, the inertia electrons become

dominant. Then we may treat collision effect as a perturbation

and obtain

5 2 1
0n = Al 241 + 3 )3 (27)
1 4B ' 3
7z =2_22 (8 + 3m°Bi) 28
® A 64 + 9mB® | (28)




1 32 64
Ry = = T5(1 = ==
® A 9n( 9TrB3) (29)
-1 5 64
Xo =5 l2m°B(1 - 5 =3) (30)

In Table I the values of D(x) for B = 1 are given and compared
witk the cor;esponding values for the D. C. case obtained by Spitzer
and Harm$2)

In Table II the resistance, the reactance, and thg absolute ’
value of conductivity are given for various B from O to lO.‘ For
B > 10, one may use Equation (26) to compute them; The error will
be within 2 per cent. For B > 50 the collisions become unimportant‘
and Equations (27).- (30) will give the correct values to within
2 per cent. However, there the validity of the Fokker-Planck
Equation already bécomes questionable and one should use Dawson-

Oberman's values instead of ours.
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values of D(x) for w = we and @ = 0

W = uUc w =
x - Re (D (x)) In(D(x)) D(x) ¥
0.10 0.0005887 ~(.0002029 0.0068053
0.11 0.0009252 -0.0003438 0.001300
0.12 0.001376 ~0.00034 0.001970
0.13 0.001956 -0.0008068 0.002847
0.14 0.00268 -0.001149 0.003955
- 0.15 0.00356 -0.00158 0.005317
- 0.16 0.00461 -0.00210 0.006955
0.17 0.00583 -0.00272 0.008886
0.18 0.00724 -0.00346 0.01113
0.19 0.00884 -0.00431 0.01370
0.20 0.01063 -0.00528 0.01660
0.22 0.01483 -0.00761 0.02347
0.24 0.01¢8 -0.01048 0.03180
0.26 0.0257 -0.0139 0.04165
0.28 0.0324 -0.0130 0.05304
0.30 0.0400 -0.02256 0.06601
. 0.32 0.0483 -0.C279 $.08057
0.34 0.0575 -0.0339 0.09572
TTTTT0.36 0 77T 0.0675 -5.0405 0.1145
0.38 0.0783 -0.0478 0.1338
0.40 6.0899 -0.0357 0.1548
0.44 0.1153 -0.07256 3.2015
0.48 0.1435 -0.09436 $.2345
0.52 0.1744 ~G.n178 3.3137
0.56 0.2080 0.l 5.37%2
0.60 0.2439 -G.1734 0.4508
0.64 0.2822 -0.2C53 5.523%8
0.68 0.3227 ~0.2405 0.6122
0.72 0.3652 ~C.2735 0.7C23
0.76 0.4096 - *-0.319%6 0.7933
0.80 0.4559 -0.3637 0.9005
0.88 - 0.5535 ~0.43813 1.123
0.96 0.6570 -0.5718 1.37%
1.04 0.7656 -0.6957 1.845




1.3457
1.4598
1.5693
1.7657
1.1915
1.9973
1.9¢13
1.8852
1.42696
1.2198
1.3105
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Table II
The conductivity, the resistance and

the reactance of A. C. current

o/A R/c X/c
w/wc Real gas Lorentz gas Real gas Lorentz gas Real gas Lorentz gas
0. 1.734 3.0 0.577  0.333 0 "0
0.05 1.729 2.880 0.577 0.340 0.045 0.070
0.1 1.713 2.653 0.577 0.354 0.089 0.130
0.15" 1.687 2.430 0.578 0.367 0.134 0.185
0.2 1.651 2,233 0.579, 0.380 0.178 0.236
0.25 1.608 2.061 0.580 0.393 0.223 0.285
0.3 1.561 1.913 0.532 0.404 0.267 0.332
0.35 1.510 1.784 0.534 0.415 0.311 0.377
0.4 1.458 1.671 0.587 0.425 0.354 0.421
0.45 1.406 1.572 0.590 0.434 0.397 0.46>
0.5 1.354 '1.483 0.593 0.443 0.440 0.508
.0.55 1.303 1.405 0.597 0.452 0.482 0.550
0.6 1.255 1.334 0.600 0.460 0.525 0.592
0.65 1.208 1.270 0.603 0,467 0.567 0.634
0.7 1.164 1.212 0.607 C.475 0.608 0.675
0.75 1.122 1.159 0.610 0.482 0.630 0.716
0.8 1.082 1.111 0.614 0.488 G.691 0.756
0.85 1.045 1.066 0.617 0.495 J.732 0.797
0.9 1.009 1.025 0.620 0.501 c.773 0.807
0.95 0.976 0.987 0.624 0.507 0.813 6.877
1. 0.944 0.952 0.627 0.313 0.3853 0.916
1.1 0.886 0.889 C.624 0.524 0.934 0.996
1.2 0.834 0.835 0.640 0.534 1.013 1.074
1.3 0.786 0.785 0.645 0.544 1.05¢« 1.159
1.4 0.743 0.741 0.650 0.553 1.172 1.230
1.5 0.721 0.702 0.657 0.561 1.222 1.308
2, 0.560 . 0.557 0.672 0.599 1.538 1.6593
3. 0.408 0.398 Cc.711 0.655 2.335 2.453
4. TTO0U3I13T 0305 T T 0LT734 “0.696 3.086 3.207
5. 0.255 0.248 0.766 0.728 2.842 3.960
6. 0.214 0.211 0.784 0.754 %.601 4.710
7. 0.183 0.182 0.790 0.776 5.380 5.460
3. 0.l62 0.161 0.796 0.794 6.08 6.21
9. 0.144 0.143 0.814 0.810 6.69 6€.81
10. 0.130 0.129 0.830 0.824 7.51 7.6

e e e ————y —— - . - e e o e e




Figure 1

- The Ranges of Validity of Computed A.C. Conductivities

-+ Region one =

0o We Wp 0 e

> Region two

The values of A.C. conductivity obtained in this paper is
valid in region one. When . exceeds ., -- region twd -- the
values calculated by Dawson et al begin to be valid.

Here 1 is the collision frequency, o is the plasma

frequency.
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